
 Computer Graphics

 Lecture 11

Curve Attributes: Parameters for curve attributes are the same as those for

line segments. We can display curves with varying colours, widths, dot dash

patterns, and available pen or brush options. Methods for adapting curve-

drawing algorithms to accommodate attribute selections are similar to

those for line drawing.

The pixel masks discussed for implementing line-type options are also used

in raster curve algorithms to generate dashed and dotted patterns. For

example, the mask 11100 produces the dashed circle shown in Fig. 4.12.

We can generate the dashes in the various octants using circle symmetry,

but we must shift the pixel positions to maintain the correct sequence of

dashes and spaces as we move from one octant to the next. Also, as in line

algorithms, pixel masks display dashes and inter-dash spaces that vary in

length according to the slope of the curve. If we want to display constant-

length dashes, we need to adjust the number of pixels plotted in each dash

as we move around the circle circumference. Instead of applying a pixel

mask with constant spans, we plot pixels along equal angular arcs to

produce equal length dashes.

Raster curves of various widths can be displayed using the method of
horizontal or vertical pixel spans. Where the magnitude of the curve slope
is less than 1, we plot vertical spans; where the slope magnitude is greater
than 1, we plot horizontal spans. Fig 4.13 demonstrates this method for
displaying a circular arc of width 4 in the first quadrant. Using circle
symmetry, we generate the circle path with vertical spans in the octant
from x = 0 to x = y, and then reflect pixel positions about the line y = x to
obtain the remainder of the curve shown. Circle sections in the other
quadrants are obtained by reflecting pixel positions in the first quadrant
about the coordinate axes. The thickness of curves displayed with this
method is again a function of curve slope. Circles, ellipses, and other curves
will appear thinnest where the slope has a magnitude of 1.

Another method for displaying thick curves is to fill in the area between
two parallel curve paths, whose separation distance is equal to the desired
width. We could do this using the specified curve path as one boundary

and setting up the second boundary either inside or outside the original
curve path. This approach, however, shifts the original curve path either
inward or outward, depending on which direction we choose for the
second boundary. We can maintain the original curve position by setting
the two boundary curves at a distance of one-half the width on either side
of the specified curve path. An example of this approach is shown in Fig. 4-
14 for a circle segment with radius 16 and a specified width of 4. The
boundary arcs are then set at a separation distance of 2 on either side of
the radius of 16. To maintain the proper dimensions of the circular arc, we
can set the radii for the concentric boundary arcs at r = 14 and r = 17.
Although this method is accurate for generating thick circles, in general, it
provides only an approximation to the true area of other thick curves. For
example, the inner and outer boundaries of a fat ellipse generated with
this method do not have the same foci

Pen (or brush) displays of curves are generated using the same techniques
discussed for straight line segments. We replicate a pen shape along the
line path, as illustrated in Fig. 4-15 for a circular arc in the first quadrant.

 Figure 4-12

 A dashed circular arc displayed with a dash span of 3 pixels and an inter-dash spacing of 2 pixels

 Figurc 4-13

 Circular arc of width 4 plotted with pixel spans.

 Figure 4.14

A circular arc of width 4 and radius 16 displayed by filling the region between two concentric arcs.

 Figure 4.15

 Circular arc displayed with rectangular pen.

Colour and Grayscale Levels: Various colour and intensity-level options can
be made available to a user, depending on the capabilities and design

objectives of a particular system. General purpose raster-scan systems, for
example, usually provide a wide range of colours, while random-scan
monitors typically offer only a few colour choices, if any. Colour options
are numerically coded with values ranging from 0 through the positive
integers. For CRT monitors, these colour codes are then converted to
intensity-level settings for the electron beams. With colour plotters, the
codes could control ink-jet deposits or pen selections

In a colour raster system, the number of colour choices available depends
on the amount of storage provided per pixel in the frame buffer. Also,
colour-information can be stored in the frame buffer in two ways: We can
store colour codes directly in the frame buffer, or we can put the colour
codes in a separate table and use pixel values as an index into this table.
With the direct storage scheme, whenever a particular colour code is
specified in an application program, the corresponding binary value is
placed in the frame buffer for each-component pixel in the output
primitives to be displayed in that colour. A minimum number of colours
can be provided in t h scheme with 3 bits of storage per pixel, as shown in
Table 4.1. Each of the three bit positions is used to control the intensity
level (either on or off) of the corresponding electron gun in an RGB
monitor. The leftmost bit controls the red gun, the middle bit controls the
green gun, and the rightmost bit controls the blue gun. Adding more bits
per pixel to the frame buffer increases the number of colour choices. With
6 bits per pixel, 2 bits can be used for each gun. This allows four different
intensity settings for each of the three colour guns, and a total of 64 colour
values are available for each screen pixel. With a resolution of 1024 by
1024, a full-colour (24bit per pixel) RGB system needs 3 megabytes of
storage for the frame buffer. Colour tables are an alternate means for
providing extended colour capabilities to a user without requiring large
frame buffers. Lower-cost personal computer systems, in particular, often
use colour tables to reduce frame-buffer storage requirements.

Color Tables

Figure 4-16 illustrates a possible scheme for storing colour values in a
colour look-up table (or video lookup table), where frame-buffer values
art- now used as indices into the colour table. In this example, each pixel
can reference any one of the 256 table positions, and each entry in the
table uses 24 bits to specify an RGB colour. For the colour code 2081, a
combination green-blue colour is displayed for pixel location (x, y). Systems
employing this particular lookup table would allow a user to select any 256
colours for simultaneous display from a palette of nearly 17 million colours.
Compared to a full-colour system, this scheme reduces the number of
simultaneous colours that can be displayed, but it also reduces the frame-
buffer storage requirements to 1 megabyte. Some graphics systems
provide 9 bits per pixel in the frame buffer, permitting a user to select 512
colours that could be used in each display. A user can set colour-table
entries in a PHIGS applications program with the function

 setColourRepresentation (ws, ci, colorptr)
Parameter ws identifies the workstation output device; parameter ci
specifies the colour index, which is the colour-table position number (0 to
255 for the example in Fig. 4-16); and parameter colorptr points to a trio
of RGB color values (r, g, b) each specified in the range from 0 to 1

Figure 4-16

A color lookup table with 24 bits per entry accessed from a frame buffer with 8 bits per pixel. A value of 196 stored at pixel

position (x, y) references the location in this table containing the value 2081. Each 8-bit segment of this entry control the

intensity level of one of the three electron guns in an RGB monitor

Grayscale

With monitors that have no color capability, color functions can be used in
an application program to set the shades of gray, or grayscale, for displayed
primitives. Numeric values over the range from 0 to 1 can be used to
specify grayscale levels, which are then converted to appropriate binary
codes for storage in the raster. This allows the intensity settings to be easily
adapted to systems with differing grayscale capabilities.

Table 4-2 lists the specifications for intensity codes for a four-level
grayscale system. In this example, any intensity input value near 0.33
would be stored as the binary value 01 in the frame buffer, and pixels with
this value would be displayed as dark gray. If additional bits per pixel are
available in the frame buffer, the value of 0.33 would be mapped to the
nearest level. With 3 bits per pixel, we can accommodate 8 gray levels;
while 8 bits per pixel would give us 256 shades of gray. An alternative
scheme for storing the intensity information is to convert each intensity
code directly to the voltage value that produces this grayscale level on the
output device in use.
When multiple output devices are available at an installation, the same
color-table interface may be used for all monitors. In this case, a color
table for a monochrome monitor can be set up using a range of RGB
values as in Fig. 4-17, with the display intensity corresponding to a given
color index ci calculated as

 Intensity = 0.5[min(r, g, b) + max(r, g, b)]

